Decreased c-fos responses to dopamine D(1) receptor agonist stimulation in mice deficient for D(3) receptors.

نویسندگان

  • M Y Jung
  • C Schmauss
چکیده

The acute administration of dopamine D(1) receptor agonists induces the expression of the immediate early gene c-fos. In wild type mice, this induction is completely abolished by pretreatment with the D(1)-selective antagonist SCH23390, and pretreatment with the D(2)-like receptor antagonist eticlopride reduces the levels of c-fos expressed in response to D(1) receptor stimulation. Mice deficient for the dopamine D(3) receptor express levels of D(1) agonist-stimulated c-fos immunoreactivity that are lower than c-fos levels of their wild type littermates. Moreover, the acute blockade of D(2) receptors in D(3) mutant mice further reduces c-fos expression levels. These data indicate that the basal activity of both D(2) and D(3) receptors contributes to D(1) agonist-stimulated c-fos responses. The findings therefore indicate that not only D(2) but also D(3) receptors play a role in dopamine-regulated gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits.

Mice deficient for dopamine D(2) and D(3) receptors exhibit blunted c-fos responses to D(1) agonist stimulation. Stereologic cell counting revealed decreased numbers of medial prefrontal cortex neurons that express Fos immunoreactivity in all layers, particularly in the prelimbic and anterior cingulate subregions. Pretreatment of these mutants with a single, low dose of methamphetamine (METH) l...

متن کامل

Dopamine-dependent desensitization of dopaminergic signaling in the developing mouse striatum.

The dynamics of dopamine receptor signaling efficacy were characterized in developing mice by measuring striatal c-Fos expression after dopaminergic agonist treatment at postnatal day 4 (P4) to P18. Control mice and mutant mice, in which dopamine production is inactivated in dopaminergic neurons by gene targeting, were treated with saline; a synthetic dopamine precursor, L-3,4-dihydroxyphenylal...

متن کامل

Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independen...

متن کامل

Functional uncoupling of adenosine A(2A) receptors and reduced responseto caffeine in mice lacking dopamine D2 receptors.

Dopamine D(2) receptors (Rs) and adenosine A(2A)Rs are coexpressed on striatopallidal neurons, where they mediate opposing actions. In agreement with the idea that D(2)Rs tonically inhibit GABA release from these neurons, stimulation-evoked GABA release was significantly greater from striatal/pallidal slices from D(2)R null mutant (D(2)R(-/-)) than from wild-type (D(2)R(+/+)) mice. Release from...

متن کامل

The effect of magnesium and bromocriptine on morphine induced dependence and withdrawal symptoms in mice

The aim of this study was to investigate the effects of magnesium as a N-Methyl–D-Aspartate (NMDA) receptor Antagnist and bromocriptine as a dopamine receptor agonist on morphine dependence and withdrawal symptoms. In the present study different groups of mice were received morphine (50 mg/kg, i.p.) for four days and on fourth day 1.5 hour after the last morphine administration they received di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 41  شماره 

صفحات  -

تاریخ انتشار 1999